skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "DeMaria, Mark"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract A simple method for adding uncertainty to neural network regression tasks in earth science via estimation of a general probability distribution is described. Specifically, we highlight the sinh-arcsinh-normal distributions as particularly well suited for neural network uncertainty estimation. The methodology supports estimation of heteroscedastic, asymmetric uncertainties by a simple modification of the network output and loss function. Method performance is demonstrated by predicting tropical cyclone intensity forecast uncertainty and by comparing two other common methods for neural network uncertainty quantification (i.e., Bayesian neural networks and Monte Carlo dropout). The simple approach described here is intuitive and applicable when no prior exists and one just wishes to parameterize the output and its uncertainty according to some previously defined family of distributions. The authors believe it will become a powerful, go-to method moving forward. 
    more » « less